5. Coordinate Geometry

1 mark Questions

1. The area of triangle formed by the points $(-5,0),(0,-5)$ and $(5,0)$ is

SEP-21,PTA-2
(A) 0 sq. units
(B) 25 sq. units
(C) 5 sq. units
(D) none of these
2. A man walks near a wall, such that the distance between him and the wall is 10 units consider the wall to be the Y axis. The path travelled by the man
(A) $x=10$
(B) $y=10$
(C) $x=0$
(D) $y=10$
3. The straight line given by the equation $x=11$ is

PTA-1, SEP-20
(A) Parallel to X axis
(B) parallel to Y axis
(C) passing through the origin
(D) passing through the point $(0,11)$
4. If $(5,7),(3, p)$ and $(6,6)$ are collinear then the value of p is

PTA-5, MAY-22
(A) 3
(B) 6
(C) 9
(D) 12
5. The point of intersection $3 x-y=4$ and $x+y=8$ is

PTA-2, JUL-22
(A) $(5,3)$
(B) $(2,4)$
(C) $(3,5)$
(D) $(4,4)$
6. The slope of the line joining $(12,3)$ and $(4, a)$ is $\frac{1}{8}$ the value of ' a ' is

PTA-3
(A) 1
(B) 4
(C) -5
(D) 2
7. The slope of the line which is perpendicular to line joining the points $(0,0)$ and $(-8,8)$ is
(A) -1
(B) 1
(C) $\frac{1}{3}$
(D) -8

MAY-22
8. If slope of the line $P Q$ is $\frac{1}{\sqrt{3}}$ then the slope of the perpendicular bisector of $P Q$ is PTA-6, JUL-22
(A) $\sqrt{3}$
(B) $-\sqrt{3}$
(C) $\frac{1}{\sqrt{3}}$
(D) 0
9. If A is a point on the $y-$ axis whose ordinate is 8 and B is a point on the X axis whose abscissae is 5 then the equation of the line $A B$ is
(A) $8 x+5 y=40$
(B) $8 x-5 y=40$
(C) $x=8$
(D) $y=5$
10. The equation of the line passing through the origin and perpendicular to the line

PTA-4
$7 x-3 y+4=0$
(A) $7 x-3 y+4=0$
(B) $3 x-7 y+4=0$
(C) $3 x+7 y=0$
(D) $7 x-3 y=0$
11. Consider four straight lines
(i) $l_{1}: 3 y=4 x+5$
(ii) l_{2} : $4 y=3 x-1$
(iii) $l_{3}: 4 y+3 x=7$
(iv) $l_{4}: 4 x+3 y=2$

Which of the following statement is true
(A) l_{1} and l_{2} are perpendicular
(B) l_{1} and l_{4} are parallel
(C) l_{2} and l_{4} are perpendicular
(D) l_{2} and l_{3} are parallel
12. A straight line has equation $8 y=4 x+21$ which of the following is true.
(A) The slope is 0.5 and the y intercept is 2.6
(B) The slope is 5 and the y intercept is 1.6
(C) The slope is 0.5 and the y intercept is 1.6
(D) The slope is 5 and the y intercept is 2.6
13. When proving that a quadrilateral is a trapezium it is necessary to show
(A) Two sides are parallel
(B) Two parallel and two non- parallel sides
(C) Opposite sides are parallel
(D) All sides are of equal length
14. When proving that a quadrilateral is a parallelogram by using slopes you must find
(A) The slopes of two sides
(B) The slopes of two pair of opposite sides
(C) The length of all sides
(D) Both the length and slopes of two sides
15. $(2,1)$ is the point of intersection of two lines
(A) $x-y-3=0,3 x-y-7=0$
(B) $x+y=3,3 x+y=7$
(C) $3 x+y=3, x+y=7$
(D) $x+3 y-3=0, x-y-7=0$

2 mark Questions

1. What is the inclination of a line whose slope is
(i) 0
$m=0$
$\tan \theta=0$

Angle of inclination is $\mathbf{0}^{\circ}$
(ii) 1

Slope $m=1$

$$
\tan \theta=1 \Rightarrow \theta=45^{\circ}\left(\therefore \tan 45^{\circ}=1\right)
$$

Angle of inclination is 45°.
2. Find the slope of a line joining the points
(ii) $(\sin \theta,-\cos \theta)$ and $(-\sin \theta, \cos \theta)$

$$
\begin{aligned}
& \text { Slope } m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \quad=\frac{\cos \theta-(-\cos \theta)}{-\sin \theta-\sin \theta} \\
& =\frac{2 \cos \theta}{-2 \sin \theta} \\
& =\frac{-\cos \theta}{\sin \theta}=-\cot \theta \\
& \boldsymbol{m}=-\cot \theta
\end{aligned}
$$

(i) $(5, \sqrt{5})$ With the origin

Slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\Rightarrow \frac{0-\sqrt{5}}{0-5}=\frac{\sqrt{5}}{5}
$$

$$
\text { Slope }=\frac{\sqrt{5}}{\sqrt{5} \times \sqrt{5}}
$$

$$
=\frac{1}{\sqrt{5}}
$$

3. Show that the given points are collinear: $(-3,-4),(7,2)$ and $(12,5)$

Let the given points be $A(-3,-4), B(7,2)$ and $C(12,5)$
Slope of $A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{[2-(-4)]}{[7-(-3)]}=\frac{2+4}{7+3}=\frac{6}{10}
$$

$$
m=\frac{3}{5}
$$

Slope of $B C=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{5-2}{12-7} \\
\boldsymbol{m} & =\frac{3}{5}
\end{aligned}
$$

Slope of $A B=$ Slope of $B C$
\therefore The given points are collinear.
4. Find the equation of a straight line which has slope $-\frac{5}{4}$ and passing through to the point $(-1,2)$

Slope $m=-\frac{5}{4}$
Equation of the line passing through the point $(-1,2) \Rightarrow y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
y-2 & =\left(-\frac{5}{4}\right)(x-(-1)) \\
4(y-2) & =-5(x+1) \\
4 y-8 & =-5 x-5 \\
5 x+4 y+5-8 & =0
\end{aligned}
$$

The required equation is $\mathbf{5 x}+\mathbf{4 y}-\mathbf{3}=\mathbf{0}$
5. Find the intercept made by following lines on the coordinate areas.
(i) $3 x-2 y-6=0$
$3 x-2 y=6$ Dividing by 6

$$
\frac{x}{2}+\frac{y}{-3}=1
$$

x Intercept $\Rightarrow 2$
y Intercept $\Rightarrow-3$

5 mark Questions

1. Find the value of \boldsymbol{k}, if the area of a quadrilateral is 28 sq. units, whose vertices are

$$
\begin{aligned}
&(-\mathbf{4},-\mathbf{2}),(-\mathbf{3}, \boldsymbol{k}),(\mathbf{3},-\mathbf{2}) \text { and }(\mathbf{2}, \mathbf{3}) \\
& \text { Area of quadrilateral }=28 \text { square units } \\
& \frac{1}{2}\left[\begin{array}{l}
-4 \\
-2
\end{array}\right)_{k}^{3}=28 \\
& {[(-4 k+6+9-4)-(6+3 k-4-12)] }=56 \\
&(-4 k+11)-(3 k-10)=56 \\
&-4 k+11-3 k+10=56 \\
&-7 k=56-21 \\
&-7 k=35 \\
& k=\frac{35}{-7} \\
& k=-\mathbf{5}
\end{aligned}
$$

PTA-5, SEP-20
2. In the figure, the quadrilateral swimming pool shown is surrounded by concrete patio. Find the area of the patio.

To find the area of patio we have to subtract area EFGH from area of ABCD
Area of $\operatorname{ABCD} A(-4,-8), B(8,-4), C(6,10), D(-10,6)$

$$
\begin{aligned}
& =\frac{1}{2}[-8 \\
& =\frac{1}{2}[(16+80+36+80)-(-64-24-100-24)] \\
& =\frac{1}{2}[212-(-212)] \\
& =\frac{1}{2}[212+212]=\frac{1}{2}[424]
\end{aligned}
$$

$=212$ Square units.
Area of EFGH $E(-3,-5), F(6,-2), G(3,7), H(-6,4)$

$$
\begin{aligned}
& \left.=\frac{1}{2}\left[{ }_{-5}^{-3}>_{-2}^{6} X_{7}^{3}\right\rangle_{4}^{-6} \chi_{-5}^{-3}\right] \\
& =\frac{1}{2}[(6+42+12+30)-(-30-6-42-12)] \\
& =\frac{1}{2}[90-(-90)] \\
& =\frac{1}{2} \text { [180] } \\
& =90 \text { Square units. }
\end{aligned}
$$

Area of the concrete patio $=$ Area of $A B C D-$ Area of $E F G H=212-90=\mathbf{1 2 2}$ sq.units.
3. The line through the points $(-2,6)$ and $(4,8)$ is perpendicular to the line through the points $(8,12)$ and $(x, 24)$. Find the value of x.

PTA-6
Slope of the line passing through the points $(-2,6)$ and $(4,8)$
Slope $m_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{equation*}
=\frac{8-6}{4-(-2)}=\frac{2}{4+2}=\frac{2}{6}=\frac{1}{3} . \tag{1}
\end{equation*}
$$

Slope of the line passing through the points $(8,12)$ and $(x, 24)$
Slope $m_{2}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{24-12}{x-8}=\frac{12}{x-8}$.
Since these lines are perpendicular to each other

$$
\begin{aligned}
m_{1} \times m_{2}=-1 \Rightarrow \quad \frac{1}{3} \times \frac{12}{x-8} & =-1 \\
\frac{4}{x-8} & =-1 \\
4 & =-(x-8) \\
4 & =-x+8 \\
x & =8-4 \\
x & =4
\end{aligned}
$$

5. Coordinate Geometry - Important Questions β
6. A quadrilateral has vertices at $A(-4,-2), B(5,-1), C(6,5)$ and $D(-7,6)$. Show that the mid-points of its sides form a parallelogram.

Midpoint of the side $A B=\left(\frac{-4+5}{2}, \frac{-2-1}{2}\right)$

$$
=\left(\frac{1}{2}, \frac{-3}{2}\right)=P
$$

Midpoint of the side $B C=\left(\frac{5+6}{2}, \frac{-1+5}{2}\right)$

$$
\begin{aligned}
& =\left(\frac{11}{2}, \frac{4}{2}\right) \\
& =\left(\frac{11}{2}, 2\right)=Q
\end{aligned}
$$

Midpoint of the side $C D=\left(\frac{6-7}{2}, \frac{5+6}{2}\right)$

$$
=\left(-\frac{1}{2}, \frac{11}{2}\right)=R
$$

Midpoint of the side $D A=\left(\frac{-7-4}{2}, \frac{6-2}{2}\right)$

$$
=\left(-\frac{11}{2}, \frac{4}{2}\right)=\left(-\frac{11}{2}, 2\right)=S
$$

Slope of opposite sides:
Slope of the $P Q$

$$
=\frac{2+\frac{3}{2}}{\frac{11}{2}-\frac{1}{2}}=\frac{7 / 2}{10 / 2}=\frac{7}{10}
$$

Slope of $R S$

$$
=\frac{2-\frac{11}{2}}{-\frac{1}{2}+\frac{11}{2}}=\frac{7 / 2}{10 / 2}=\frac{7}{10}
$$

Slope of $Q R=\frac{\frac{11}{2}-2}{-\frac{1}{2}-\frac{11}{2}}=\frac{\frac{7}{2}}{-\frac{12}{2}}=-\frac{7}{12}$
Slope of $P S=\frac{2+\frac{3}{2}}{-\frac{11}{2}-\frac{1}{2}}=\frac{\frac{7}{2}}{\frac{-11-1}{2}}=\frac{7 / 2}{-12 / 2}=-\frac{7}{12}$

$$
\therefore P Q=R S, \quad Q R=P S
$$

Hence, mid-points of its sides form a parallelogram
5. A cat is located at the point $(-6,-4)$ is $x y$-plane. A bottle of milk is kept at $(5,11)$

The cat wish to consume the milk travelling through shortest possible distance. Find the equation of the path it needs to take its milk.
Equation of the path $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$
$\begin{aligned} &(-6,-4) \text { and }(5,11) \\ & \frac{y+4}{15}=\frac{x+6}{11} \begin{array}{l}\left(x_{1}, y_{1}\right)=(-6,-4) \\ \left(x_{2}, y_{2}\right)=(5,11)\end{array}\end{aligned}$
$11(y+4)=15(x+6)$
$11 y+44=15 x+90$

$$
0=15 x-11 y+90-44
$$

The required equation is $\mathbf{1 5 x} \boldsymbol{x} \mathbf{1 1} \boldsymbol{y}+\mathbf{4 6}=\mathbf{0}$
6. Find the equation of a straight line which has slope $-\frac{5}{4}$ and passing through to the point $(-1,2)$

Slope $m=-\frac{5}{4}$
Equation of the line passing through the point $(-1,2) \Rightarrow y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
y-2 & =\left(-\frac{5}{4}\right)(x-(-1)) \\
4(y-2) & =-5(x+1) \\
4 y-8 & =-5 x-5 \\
5 x+4 y+5-8 & =0
\end{aligned}
$$

The required equation is $\mathbf{5 x}+\mathbf{4 y}-\mathbf{3}=\mathbf{0}$
7. Find the equation of the median and altitude of triangle $A B C$ through A where the vertices are $A(6,2), B(-5,-1)$ and $C(1,9)$

SEP-21, PTA-6
The median drawn passing through the vertex A intersect the side BC at
the mid point.

$$
\begin{aligned}
D & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
D & =\left(\frac{-5+1}{2}, \frac{-1+9}{2}\right) \quad \begin{array}{c}
\left(x_{1}, y_{1}\right)=B(-5,-1) \\
\left(x_{2}, y_{2}\right)=C(1,9)
\end{array} \\
& =\left(\frac{-4}{2}, \frac{8}{2}\right)=(-2,4)
\end{aligned}
$$

Equation of the median $A D$:

$$
\begin{array}{ll}
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}} & \\
\frac{y-2}{4-2}=\frac{x-6}{-2-6} & \begin{array}{c}
\left(x_{1}, y_{1}\right)=A(6,2) \\
\left(x_{2}, y_{2}\right)=D(-2,4)
\end{array} \\
\frac{y-2}{2}=\frac{x-6}{-8} & \\
-8(y-2)=2(x-6) \\
-8 y+16=2 x-12 \\
& 0=2 x+8 y-12-16 \\
\qquad \begin{aligned}
2 x+8 y-28=0
\end{aligned} \\
\div 2, \quad x+4 y-14=0
\end{array}
$$

If a line passing through the vertex A is altitude, then it will be perpendicular to $B C$
Slope of $B C \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{9+1}{1+5}=\frac{10}{6}=\frac{5}{3}$

$$
\begin{aligned}
m_{1} \times m_{2} & =-1 \\
\frac{5}{3} \times m_{2} & =-1 \\
m_{2} & =-1 \times \frac{3}{5} \\
& =-\frac{3}{5}
\end{aligned}
$$

Equation of altitude
passing through A

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-2=-\frac{3}{5}(x-6) \\
5(y-2)=-3(x-6) \\
5 y-10=-3 x+18 \\
3 x+5 y-10-18=0 \\
\mathbf{3 x}+\mathbf{5 y}-\mathbf{2 8}=\mathbf{0}
\end{gathered}
$$

5. Coordinate Geometry - Important Questions B
6. Find the equation of a straight line joining the point of intersection of $3 x+y+2=0$ and $x-2 y-4=0$ to the point of intersection of $7 x-3 y=-12$ and $2 y=x+3$

$$
\begin{aligned}
& 3 x+y+2=0 \\
& x-2 y-4=0 \\
& 2 \times(1) \Rightarrow 6 x+2 y+4=0 \\
& \text { (2) } \Rightarrow \begin{aligned}
& x-\not 2 y-4=0 \\
& \hline 7 x=0 \\
& \hline
\end{aligned} \\
& x=\frac{0}{7}=0 \\
& x=0
\end{aligned}
$$

$\operatorname{sub} x=0$ in (1) we get

$$
\begin{aligned}
3(0)+y+2 & =0 \\
y & =-2
\end{aligned}
$$

Point of intersection of the first two lines is $(0,-2)$

$$
\begin{aligned}
& 7 x-3 y=-12 \\
& 2 y=x+3 \\
& x-2 y=-3 \\
& 2 \times(3) \Rightarrow 14 x-6 y y=-24 \\
& -3 \times(4) \Rightarrow 3 x-6 y=-9 \\
& \begin{array}{ll}
(-) \quad(+) \quad(+) \\
\hline 11 x
\end{array} \\
& 11 x=-15 \\
& x=-\frac{15}{11}
\end{aligned}
$$

Sub $x=-\frac{15}{11}$ in (4) we get
$-\frac{15}{11}-2 y=-3$

$$
\begin{aligned}
-2 y & =-3+\frac{15}{11} \\
-2 y & =\frac{-33+15}{11} \\
-2 y & =-\frac{18}{11} \\
y & =\frac{9}{11}
\end{aligned}
$$

Point of intersection of other set of lines is $\left(\frac{-15}{11}, \frac{9}{11}\right)$

To find the equation of the line passing through the points $(0,-2)$ and $\left(\frac{-15}{11}, \frac{9}{11}\right)$

$$
\begin{aligned}
\frac{y-y_{1}}{y_{2}-y_{1}} & =\frac{x-x_{1}}{x_{2}-x_{1}} \\
\frac{y+2}{\frac{9}{11}+2} & =\frac{x-0}{-\frac{15}{11}-0} \\
\frac{y+2}{\frac{31}{11}} & =\frac{x-0}{-\frac{15}{11}} \\
-15(y+2) & =31(x-0) \\
-15 y-30 & =31 x
\end{aligned}
$$

\therefore The required equation is $\mathbf{3 1} x+\mathbf{1 5 y}+\mathbf{3 0}=\mathbf{0}$
9. The area of a triangle is 5 sq . Units. Two of its vertices are $(2,1)$ and $(3,-2)$. The third vertex is (x, y) where $y=x+3$. Find the coordinates of the third vertex.

Given, area of triangle ABC is 5 sq. Units and $A(2,1), B(3,-2), C(x, y)$ where $y=x+3$

$$
\begin{align*}
& \text { Area of } \Delta=\frac{1}{2}\left[{ }_{1}^{2} x_{2}^{3}{ }_{2}^{x}{ }_{4}^{x} X_{1}^{2}\right]=5 \\
&(-4+3 y+x)-(3-2 x+2 y)=10 \\
& x+3 y-4-3+2 x-2 y=10 \\
& 3 x+y=17 \ldots \ldots \tag{1}
\end{align*}
$$

Given $y=x+3$ sub in (1)

$$
3 x+x+3=17
$$

$$
4 x=14 \Rightarrow x=\frac{14}{4} \Rightarrow x=\frac{7}{2}
$$

Substitute, $x=\frac{7}{2}$ in $y=x+3 \Rightarrow y=\frac{13}{2}$
\therefore Third vertex is $\left(\frac{7}{2}, \frac{13}{2}\right)$

